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The initial unsteady two-dimensional flow around an impulsively started circular 
cylinder is investigated using the random-vortex numerical method. To understand 
the mechanisms of the primary and secondary vortex formation, we investigate the 
relationship between the creation, diffusion and convection of vorticity to the genesis 
and evolution of the complex and ‘unstable’ flow structures of the recirculating zone 
behind the cylinder. Our simulation reveals detailed geometric features of the wake 
which are in agreement with experimental observations and with other numerical 
calculations. Numerical calculation a t  Reynolds numbers R = 3000, 9500 and lo4 
show that the numerical method is appropriately sensitive to changes of the 
Reynolds number. Numerical functionals such as the length of the wake, velocity on 
the wake axis and the angle of separation for our calculations are in satisfactory 
agreement with known experimental and numerical results. This numerical method 
gives results comparable to those of a previously published method but does so using 
much less memory and computer time. 

1. Introduction 
It is generally recognized that one of the most important unexplained phenomena 

concerning flows past obstacles a t  high Reynolds numbers is the development of the 
unsteady wake. A fundamental understanding of the behaviour of unsteady flows has 
significant implications for the solution of many fluid dynamic problems. Never- 
theless, the challenges in studying unsteady flow are considerable. Not only are the 
equations involved nonlinear and the viscosity small, but the development of 
the wake is extremely complex owing in part to the instability of some of the 
recirculating structures. Moreover, the Navier-Stokes equations, which describe 
viscous fluid flows, are so complicated that analytical and numerical treatments, 
especially a t  large Reynolds numbers, are very difficult. The analytic solution to 
these equations, as with most nonlinear partial differential equations, has eluded 
theoretical analysis except for a few very special cases. On the other hand, attempts 
to utilize numerical methods face several important constraints. For example, in the 
study of unsteady flow of an incompressible fluid past an object a t  high Reynolds 
numbers, R, the crucial region is small in size and, in addition, involves boundaries 
and vortex sheets. This puts the numerical method based on a grid at a considerable 
disadvantage because the mesh width must decrease as R increases. Consequently, a t  
very large R,  a very fine grid must be imposed or else the numerical viscosity due to 
the grid will swamp the effects of the true viscosity as represented by the Reynolds 
number. 

There have been a plethora of numerical studies analysing separated flow around 
an impulsively started circular cylinder. Payne (1958) was one of the first to use a 
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finite-difference method to simulate unsteady symmetric viscous flow past an 
impulsively started cylinder for R = 40 and 100. Similar methods have been 
subsequently used by many authors including Ingham (1968), Son & Hanratty 
(1969), Thoman & Szewczyk (1969), Dennis & Staniforth (1971), Telionis & Tsahalis 
(1974) and Lin, Pepper & Lee (1975). More recently investigators like Ta Phuoc Loc 
(1980) used second- and fourth-order compact finite-difference schemes to  study 
unsteady flow at R = 300,500 and 1000. Lecointe & Piquet (1984) used a second- and 
fourth-order accurate method of mehrstellen type to  study flow at R = 200 to 3000, 
and Rogers, Kwak & Kual(l985) used a pseudocompressibility method to study the 
symmetric wake a t  R = 1200. Until recently, most of the numerical calculations 
diverged from experimental data a t  around R = 1200. Lecointe & Piquet showed the 
development of the secondary vortices at R = 3000, but the resolution of their 
calculations is not good. Cheer (19836) was able to reproduce the iwcondary vortex 
structures a t  R = 9500 using a vortex method, and Ta Phuoc Loc & Bouard (1985) 
later extended their difference scheme to a flow a t  R = 3000 and 9500. Finite-element 
methods and spectral methods have also been successfully used (see Shen 1977; 
Gottlieb & Orszag 1977; Peyret & Taylor 1983). 

Experimentalists working to  understand the phenomena of unsteady wake 
formation have been able to visualize flow past impulsively started circular cylinders 
for various Reynolds numbers. Using the aluminium powder method Honji & 
Teneda (1969) studied flows a t  R = 40-1700, Coutanceau & Bouard (1977, 1979) and 
Bouard & Coutanceau (1980) produced flow visualizations for R = 40-9500 by 
reflecting magnesium or diffusing rilsan solid tracers, and Nagata, Funada & Matsui 
(1985b), and Nagata et al. ( 1 9 8 5 ~ )  used a combination of the aluminium dust and the 
hydrogen bubble technique to  study flow at R = 1200. Among the various aspects of 
the development of the unsteady wake studied by these investigators are functionals 
such as the size of the pair of standing eddies formed behind the cylinder, the 
separation angle measured as a function of time and the timing of the delicately 
formed secondary vortices. Nagata et al. (1985a) also attempted to study the process 
of vorticity transfer by analysing the combination of the velocity field and the 
streamlines. 

In  this paper, we examine the mechanism of the creation of the primary and 
secondary vortex structures behind an impulsively started circular cylinder a t  
Reynolds numbers 30O(r1O4. The process of vortex and secondary vortex formation 
can be regarded as a process of vorticity transfer - that is, the creation of vorticity 
on the boundary due to the no-slip boundary condition, the diffusion of the vorticity 
from the boundary, the convection of the vorticity produced on the surface of the 
cylinder through the separation point and the redistribution of the vorticity behind 
the cylinder resulting in primary and secondary vortex formation. This time- 
dependent process of vorticity creation, diffusion and convection is reproduced in the 
numerical algorithm by tracking the creation and motions of computational vortex 
elements, which carry concentrations of vorticity (sheet elements) or circulation 
(blob elements). The velocity field is reconstructed from the position and con- 
centration of vorticity or circulation of these computational elements. 

2. The numerical method 
Consider the two-dimensional Navier-Stokes equations in vorticity formulation 

in the absence of any boundaries. We denote u = (u ,v)  to  be the velocity vector, 
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z = (x, y) the position vector, t = curl (u, v) the vorticity, $ the stream function, R 
the Reynolds number and V2 the Laplacian. 

u = $y, v = -$bz. (1c)  

We split the above system of equations up into two parts : an inviscid and a viscous 
part 

t t + @ - V ) t  = 0, P a )  

(2b )  
V 2 l++=-t, 

t = tk, t ) .  (3b)  

The inviscid (Euler) equations are modelled using the vortex-blobs method and the 
diffusion equation is modelled using random walks. This method, presented by 
Chorin (1973), is a grid-free numerical method where the nonlinear terms of the 
equations are studied through inviscid interactions between vortex blobs of small 
compact support, and the effects of viscosity are studied through use of the 
relationship between diffusion and random walks. 

At any time t > 0, the vortex elements already in the flow will move according to 
the discrete approximation to Euler's equations (2a ,  b, c )  

where 

and where At is the time step, (x:, yr) is the position of the ith vortex element a t  time 
t = n A t ,  

rtj = [(x:-~,"))~+(y;-yin)~]t, ri, = (~:-xy)~+(y:-yy)~, 

u is the cutoff value, and k, is the strength of the vortex-blob element whose centre 
is (x?,$). 

Convergence proofs for this numerical method are given by Hald & Del Prete 
(1978), Hald (1979, 1985) and Beale & Majda (1982a,b).  The rate of convergence 
depends in part on how u is chosen and how well the velocity (u, v) is approximated. 
In  the calculations for this paper, u is chosen to be h/n for a specific reason to be 
discussed later, and a second-order-accurate predictor-corrector algorithm is used to 
obtain the (u, v) velocities. 

Viscosity is included in the algorithm by adding a random-walk component to the 
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discrete solution of Euler's equations above. Random walks are used to approximate 
the solution to the diffusion equations (3a, b ) .  Thus the discrete approximations to 
(1 a ,  6 ,  c) are 

x;+' = x;+Atur+r:, ( 6 4  

y;+'= y r + A t v ? + $ ,  (6b )  

where ?,+, 7; are independent random variables with a Gaussian distribution of mean 
zero and variance 2AtlR.  

Roberts (1983) computationally tested the accuracy of the random-vortex method 
and confirmed the error to  be O(l/&R), where N is the number of computational 
elements. Marchioro & Pulvirenti (1982) demonstrated analytically that the random- 
vortex construction represents a weak solution to  the Navier-Stokes equations. 
Goodman (1986) extended work in this direction by giving a convergence proof of the 
method. He showed that (with high probability) this method will produce good 
approximations to  the true velocities. Moreover, with sufficient smoothing, there are 
no serious restrictions on the time step A t ;  as long as At goes to zero as N goes to co 
and At 2 CN-P for some p > 0, the method will converge. Beale & Majda (1981), and 
Anderson & Greengard (1985) also have discussed errors introduced in the viscous 
splitting, in the approximate solution to  the inviscid Euler's equations, in the 
smoothing and in sampling. 

When we introduce an object into the flow, which in our case is a circular cylinder, 
we need to satisfy the no-slip boundary conditions : 

u - n = 0 on the boundary aD, n normal to aD, (7 a)  

us z = 0 on the boundary aD, z tangent to  aD. (7 b )  

To satisfy the normal boundary conditions, we use the method of images for the 
vortex blobs, and to satisfy the tangential boundary conditions, a vorticity 
generation algorithm is used. 

In  order to improve convergence on the boundary of the object, vortex-sheet 
elements instead of vortex-blob elements are created as a result of the no-slip 
boundary condition by the numerical algorithm. These vortex-sheet elements diffuse 
away from the boundary and are convected downstream, producing a layer of large 
vorticity adjacent to the solid surface. Through this boundary layer the tangential 
velocity falls from its value in the main stream to zero at the solid surface. The 
vortex-sheet elements move and diffuse according to  the boundary-layer equations : 

with boundary conditions 

u = (u, v) = (0,O) at y = 0, ( 1 1 4  

( l i b )  u(z, y = co) = U,(X). 

In  this set of equations, u refers to the velocity component in the tangential direction 
and v is the velocity component in the direction normal to the boundary. Similarly 
(z,y) refers to the position in (r3,r) coordinates. 
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To approximate this set of equations numerically, we once again split the operator 
into an inviscid and a viscous part: 

The inviscid part of the equations is modelled using,vortex-sheet elements and the 
viscous part is modelled using random walks. This method was introduced by Chorin 
in 1978. See Chorin (1978, 1980) for more details. For a documentation of a computer 
program implementing the vortex-sheets method for the boundary-layer equations 
see Cheer (1978). 

The vortex sheets move according to the discrete approximation to equations 
(12a, b ,  c )  : 

y;+l = y; + At 

where U? = U,(xa)-&-x&dj, d .  3 = l-lx:-xn 5 1  h-l ' 
i 

xi is the sum over all vortex sheets q such that y y  > y:, h is the length of the 
sheet. 

I1 M Um(x; +ih)  y: -X & d; y;", 

I ,  M U,(X? + ih)  &' - C & d; d", 
i 

i 

I(~;+$)-xyl dT = ,_l(xr-$)-xyl 
, h 3 h 

d f = l -  3 

y;n = min (y?,  Y y L  

C, is the sum over all vortex sheets A!$ such that 0 < dj' 6 1 ,  and c- is the sum over all 
vortex sheets S, such that 0 < d; < 1 .  

For the present study, a second-order predictor-corrector scheme for the 
calculation of the velocities ( u , v )  is used. Once again, the effects of viscosity are 
included by adding to the normal component of the solution an independent random 
variable qi drawn from a Gaussian distribution of mean zero and variance 2AtlR. 
Thus 

x:+' = xi" + At ur, ( 1 5 4  

y;+l = yF+Att$+yi .  (15b) 

Convergence results for the vortex-sheet method are given by Puckett (1987). He 
also performed numerical experiments varying the numerical parameters and claimed 
that, unlike the vortex-blobs method, the added accuracy introduced by using a 
higher-order approximation for the velocities (u, v) is swamped, over time, by the 
errors in the randomiwalk solution. He proved that for At = O(N-:) the numerical 
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method converges like lnN(N-f) uniformly as the diffusion coefficient (1/R) tends to 
0. 

These two methods are coupled at the edge of the boundary layer. By choosing the 
cutoff Q = h/x, it  can be shown that the velocity induced on the boundary by a blob 
is identical to the velocity induced by a sheet sitting at  the same point a t  the edge 
of the boundary (see Cheer 1983~) .  Thus, as a vortex sheet leaves the boundary layer 
and becomes a vortex blob, its effect on the boundary condition is the same. 

To satisfy the normal boundary condition, we use the method of images on the 
vortex blobs. The resulting u- and v-velocities satisfying u - n = 0 are 

where 

(r j )*  = xj2 + y;, Q = h/x, 

XI is taken over all vortices such that r i ,  ri j ,  r$ > (T, and X2 is taken over all vortices 
such that T i ,  r i j ,  r t  < (T. 

Developments, modifications, discussions, extensions and applications of the 
random-vortex method to a variety of flow problems are reviewed in Leonard (1980), 
Aref (1983) and Ghoneim & Sherman (1985). 

3. Problem statement and numerical parameters 
Initially, a t  time t = 0, the cylinder of radius one is assumed to be a t  rest in a 

stationary fluid of density p = 1. At some instant in time t > 0, the cylinder is set into 
motion impulsively with some uniform and constant translational velocity U,. We 
consider the flow development in a two-dimensional cross-section (see figure 1). 

The numerical parameters used in this study are as follows. The circular cylinder 
of radius 1 is divided into equal pieces each of arclength h = n /M,  where M varies 
from 20 to 50. The maximum strength allowable for each vortex sheet is tmX (&,,ax 

varies between 0.25 and 0.5) and the maximum circulation for the vortex points is 
hcmax. For M = 20 and Emax = 0.25, hg,,, = 0.0785. The Reynolds number R = 
(pU,D/u) where p = density = 1, U, = free-stream velocity = 1, D = diameter of the 
cylinder and v = viscosity. The time step At varies from At* = 0.03 to 0.005, where 
t = t*U,/D. These choices for the above parameters are consistent with theoretical 
results and with the results presented in Sethian & Ghoniem (1986) who studied the 
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FIQURE I .  8 refers to the point of separation, 8, is the angle of separation, D is the diameter of the 
cylinder, L is the length of the wake and (a, b)  is the location of the centre of the main vortex. 

effect of variation of nearly all possible numerical parameters on the accuracy of the 
solution generated by the random-vortex method. 

In the present study, for R = lo4 and 9500 the flow is simulated from impulsive 
start to two diameter movements of the cylinder, and from impulsive start to three 
diameter movements for R = 3000. To allow comparison of our results to 
experimental data and other numerical calculations, symmetry with respect to 
the x-axis is imposed by reflecting the vortex elements in the upper half plane to the 
lower half plane. This is justifiable since the flow is known to be symmetric in the 
initial stages of development (see Bouard & Coutanceau 1980, and Batchelor 1967, 
Plate 10). 

For the case M = 20, c,,, = 0.25, hc,,, = 0.0785, R = 9500 and At* = 0.03, we 
start out with 112 computational elements and end up with 906 after two diameter 
movements of the cylinder. This simulation took about 15 minutes of CPU time on 
a Celerity mini-computer, and required less than 5000 words of computer memory. 
In  contrast, Ta Phuoc Loc & Bouard’s (1985) difference calculations used a grid of 
size 101 x 141, or 14000 location8 where the solution must be determined before 
advancing to the next time step for R = 3000, and a grid of up to 101 x 301 for R = 
9500. Such a large computational grid requires the storage and computational time 
of a supercomputer. For problems involving an incompressible fluid, the effects at 
infinity must be calculated correctly. I n  a difference scheme the grid must be 
sufficiently large in order t o  incorporate this condition accurately. Moreover in using 
higher-order approximation schemes one needs t o  be careful that oscillations based 
on the numerical scheme are not introduced into the solution. The vortex method 
incorporates this condition at infinity via the Biot-Savart Law (see Chorin 1973 and 
Leonard 1980). 

4. Results 
4.1. Circulation and vorticity distribution 

In  order to understand the mechanism of the development of secondary vortices and 
the mechanisms of vorticity transfer, we look at the time variation of vorticity 
creation on the boundary and distribution of circulation around the cylinder. This is 
done by tracking the motion of the vortex elements used to simulate the flow. 
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Angle\t* 

1.80 
9.00 

16.20 
23.40 
30.60 
37.80 
45.00 
52.20 
59.40 
66.60 
73.80 
81.00 
88.20 
95.40 

102.60 
109.80 
117.00 
124.00 
131.40 
138.60 
145.80 
153.00 
160.20 
167.40 
174.60 

0.50 

0.06 
0.16 
0.36 
0.67 
0.42 
0.90 
1.09 
1.23 
1.35 
1.31 
0.69 
0.24 
1.09 
0.25 
0.24 
0.40 

-0.36 
-0.55 
-0.74 
-0.13 
-0.66 

0.01 
-0.43 

0.12 
-0.22 

0.75 

0.05 
0.12 
0.26 
0.73 
0.63 
0.59 
0.12 
0.85 
1.31 
0.69 
0.73 
0.98 
0.09 

-0.29 
-0.28 
- 1.25 
-2.32 
-1.70 
-0.98 
-0.96 
-0.62 
-0.72 
-0.89 
-0.14 
-0.34 

1 .00 

0.62 
0.19 
0.54 
0.57 
0.95 
0.82 
1.31 
1.12 
1.39 
1.11 
1.71 
1.01 
1.33 
1.13 
1.17 

-0.14 
-0.22 

0.85 
-1.62 
-2.01 
-1.20 
-0.92 
-0.28 
-0.49 
-0.19 

1.25 

0.06 
0.22 
0.51 
0.68 
0.89 
0.79 
1.04 
1.36 
1.11 
0.83 
1 .oo 
0.45 

-0.52 
-0.05 
-0.15 
-0.60 

0.22 
1.75 

-0.79 
-1.33 
- 1.77 
- 1.28 
-1.12 
-0.36 
-0.19 

1.50 

0.06 
0.13 
0.31 
0.50 
0.70 
0.27 
0.52 
1.02 
0.14 
0.03 
0.67 
0.00 

-0.35 
-0.87 
-0.29 
-0.14 

0.67 
-1.71 
-0.41 
- 1.02 
- 1.27 
-1.18 
-1.15 
-0.65 
-0.17 

2.00 

0.06 
0.15 
0.26 
0.70 
0.72 
0.77 
0.36 
1 .00 
1.13 
0.04 
0.54 

-0.45 
-0.56 
-0.62 
-0.38 
-0.68 
-0.55 

0.63 
0.72 

- 1.36 
-0.77 
-0.70 
-0.87 
-0.47 
-0.15 

TABLE 1. Time variation of the boundary condition. The values in the columns indicate the amount 
of vorticity to be created by the vorticity-creation algorithm in the portion of the cylinder that is 
below the z-axis. Zero degrees correspond to the front stagnation point and 180 degrees correspond 
to the rear stagnation point. 

At time t* = 0, the flow is potential. Immediately after impulsive start, vortex- 
sheet elements are generated on the boundary of the cylinder to satisfy the tangential 
boundary conditions. The sign of the vorticity created is negative in the upper half 
of the cylinder and positive in the lower half. For the numerical parameters, M = 20, 
E;,,, = 0.25, At* = 0.03 and R = 9500, 112 vortex-sheet elements are created initially 
to satisfy the tangential boundary conditions. These sheet elements move along the 
boundary towards the rear of the cylinder by convection and diffuse away from the 
cylinder by random walks. This process will uncover sections of the cylinder where 
more vortex sheets need to be created in order to satisfy the tangential boundary 
conditions. Table 1 gives the time variation of this boundary condition around the 
bottom half of the cylinder for one numerical experiment. Some of the sheets in the 
boundary layer will move into the outer flow where they are turned into vortex 
blobs. From time t* = 0.05 to 0.75, there are, on average, about twice as many sheets 
created at each time step to satisfy the tangential boundary condition as there are 
sheets leaving the boundary layer and becoming blobs. The circulation per unit area 
around the cylinder is calculated in the following way. The cylinder is divided into 
50 equal pieces, each of arclength ~ / 5 0  and width 0.05. Vortex elements whose 
centres lie within an area are summed and divided by the area. The results are given 
in table 2. The results show that a peak in circulation occurs around time t* = 0.75. 
Numerical calculations of Van Dommelen & Shen (1982) reveal a singularity in the 
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Angle\t* 

3.60 
18.00 
32.40 
46.80 
61.20 
75.60 
90.00 

104.40 
118.80 
133.20 
147.60 
162.00 
176.40 

0.50 

0 
10.72 
45.16 
45.25 
97.97 
97.47 
83.93 
93.69 
72.15 

140.60 
77.64 
53.55 
18.26 

0.75 

0 
24.1 1 
27.26 

139.72 
82.83 
65.63 

112.66 
197.44 
38.51 
27.81 
2.61 
5.17 
8.33 

1 .oo 
0 
9.62 

25.26 
29.00 
55.84 
60.58 
59.04 

102.37 
19.05 

-24.20 
- 16.07 

15.40 
-6.13 

1.25 

0 
5.85 

28.75 
33.37 
66.36 
58.34 

174.50 
38.04 

- 12.49 
-50.30 
-31.81 

2.68 
- 12.19 

1.50 

0 
23.29 
24.95 
66.80 

113.13 
87.84 
88.53 

- 16.49 
-71.34 
- 68.68 
-53.77 
-21.23 

0.00 

2.00 

0 
20.67 
32.35 

119.10 
101.64 
81.80 

157.23 
61.77 

- 14.32 
-55.58 
-58.71 

1.19 
0.00 

TABLE 2. The half circle below the x-axis is divided into 25 pieces each of arc-length x/25. The 
average of the circulation in each of the pieces that is between the cylinder and 0.05 distance from 
the cylinder is calculated. Values in every other grid is presented above. Zero degrees correspond 
to the forward and 180 degrees correspond to the rear stagnation point. 

boundary-layer solution a t  about t* = 0.75 corresponding to vortex peeling and 
separation. Ta Phuoc LOC & Bouard exhibit a peak in vorticity in their numerical 
solution. Another peak in circulation appears around time t* = 1.25. 

In contrast to the early development of the flow (from impulsive start to t* = 
0.75), in the time interval from t* = 0.75 to 2.00, the number of vortex sheets created 
on the boundary equals, on average, the number of sheets that leave the boundary 
layer and turn into blobs. Some of the vortex elements produced on the surface 
accumulate temporarily near the separation point and form a secondary vortex 
region. The incorporation of vortex elements into the main eddy is a combination of 
the vortex elements leaving through the point of separation and the shedding of 
secondary vortices. 

At time t* = 2.00, there are a total ofN = 906 computational elements representing 
the flow: one half above and one half below the axis of symmetry. Of these 906 
elements, 290 are vortex sheets and 616 are vortex blobs. 

4.2. Development of the vortex structures in the recirculating zones 

Figures 2-8 are computer graphs of the velocity vector field behind the circular 
cylinder at different times of the flow development at R = 9500 and lo4. Many 
detailed results have been deleted in view of their general similarity to those 
presented by Ta Phuoc LOC & Bouard (1985) in a paper submitted later but 
published earlier. The length of the vectors in the figures corresponds to the speed of 
the fluid at that point, and the arrow indicates the direction of the flow. Arrowheads 
without tails indicate that the velocity is very small there. The first coherent 
‘vortex’ structure appears a t  time t* = 0.75 (see figure 2). At time t* = 1.00, a 
complex flow pattern emerges (see figures 3,4) .  The streamline plot shows that there 
are three distinct regions. The largest of these regions comprises the main vortex - 
the same one seen originally a t  t* = 0.75. The velocity of the flow in this vortex is 
quite strong and the centre of the vortex has migrated downstream. The second 
region is a recirculating zone below the main vortex. This recirculating structure 
contains little vorticity (see figure 3b). The third region is a region of high 



494 A .  Y.  Cheer 

FIGURE 2. Plot of the induced velocity of each vortex element in the flow at time t* = 0.75 and 
R = 9500. Length of the arrow indicates the speed of the vortex element. The values for the 
numerical parameters are At* = 0.03, f,, = 0.25 andM = 20. These values are the same for figures 
2. 3 and 5-8. 

concentration of vortex elements and is located close to the separation point. The 
flow being pushed backwards towards the front stagnation point by the main vortex 
is met by the flow moving towards the rear, resulting in a pair of oppositely rotating 
secondary vortices. This complex configuration of the wake is referred to by Bouard 
& Coutanceau (1980) as the /?-phenomenon. This pair of vortices was also observed 
by Prandtl & Tietjens (1957, page 292, plate 14, figure 33) and Ta Phuoc LOC & 
Bouard (1985), but neither Lecointe & Piquet (1984) nor Thoman & Szewczyk (1969) 
found evidence of this phenomenon in their numerical calculations. Note that in 
figures 3 and 4, the recirculating structure has its own centre of recirculation. This 
centre of recirculation is present in the photographs of Bouard & Coutanceau (1980) 
a t  t* = 1.00 but is not present in either the photographs or the numerical results of 
Ta Phuoc Loc & Bouard (1985). Velocity vector fields and streamlines of subsequent 
development of the flow are presented in figures 5-8 corresponding to times t* = 
1.25, 1.5, 1.75 and 2.00 respectively. 

When the Reynolds number is changed slightly, from R = 9500 to lo4, the flow 
development remains nearly the same, but when the Reynolds number is changed to 
R = 3000 there is a drastic alteration in the development of the flow. At time t* = 
1.50 (figure 9), the geometry of the wake consists of three vortices - a pair of 
oppositely rotating secondary vortices in the secondary vortex region and one in the 
rear of the cylinder. This configuration (see also figure 10 corresponding to t* = 2.25), 
referred to as the a-phenomenon, was observed by Bouard & Coutanceau (1980) 
experimentally and Lccointe & Piquet (1984) and Ta Phuoc Loc & Bouard (1985) 
numerically a t  R = 3000, and by Rogers et al. (1985) numerically and Nagata et al. 
(19854 experimentally a t  R = 1000. 

4.3. Flows at other numerical parameters 
Previous work by Sethian & Ghoneim (1986) has shown the numerical convergence 
of the hybrid random vortex method. Their detailed and exhaustive analysis applied 
the random-vortex method to viscous, two-dimensional incompressible flow, 
comparing results from physical experiments with computed solutions obtained after 
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FIGURE 3. Flow past a cylinder at t* = 1.00 and R = 9500. (a )  Plot of the velocity vector field. 
( b )  Plot of the velocity of each vortex element in the flow at tha t  time. (c) Plot of the streamlines in 
the wake of the cylinder above the x-axis. The flow is symmetric. 
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.............. .............. .............. .............. 
FIQURE 4. (a) The velocity vector field and ( b )  the streamline pattern for flow a t  R = lo4 and time 
t* = 1 .OO. This solution was generated by simulating the inviscid equations in the outer region and 
the viscous equations in the boundary layer. The values of the numerical parameters are At* = 
0.05, g,,, = 0.50 and M = 20. 

FIQUHE 5 .  Velocity vector field a t  time t* = 1.25 and R = 9500. 

variation of choice of time step, number of particles, boundary-layer resolution, core 
size and size of the domain. Their results for unsteady high-Reynolds-number flow 
indicate that an increased number of vortices will provide better resolution provided 
the time step is suitably decreased so that the advection error remains small in 
comparison with the physical diffusion scale. For further details and discussion on 
the numerical convergence of the method, please see Sethian & Ghoneim (1986). 

In  the present paper, numerical experiments are performed using (i) different 
Reynolds numbers, (ii) different set of random numbers to model the diffusion 
equation, (iii) different time step, (iv) different maximum values for Emax, (v) 
different values for h and (vi) first- and second-order approximations for the 
velocities u, v. Results indicate that the numerical method is appropriately sensitive 
to changes in R. Moreover, the structures in the flow do not change noticeably so long 
as the random numbers used are sampled from a Gaussian distribution of mean zero 
and variance 2AtlR. Refining other numerical parameters such as changing At* from 
0.03 to 0.02, the value for &,ax from 0.25 to 0.2 and the value for M from 20 to 30, 
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f ', ' 
I -  

FIQURE 6. (a) Plot of the induced velocity of each vortex element in the flow a t  time t* = 1.50 
and R = 9500. ( b )  Corresponding velocity vector field. 

does not produce significant improvements in the solution presented nor does i t  alter 
the solution in any physically meaningful way. For the above-specified values of the 
parameters, what variability that exists in the solutions appears in the numerical 
functionals which vary slightly from one computer run to another. When runs using 
one set of values are averaged and compared to runs using refined values the 
difference is small. The general structures and the general development of the flow 
in the initial unsteady stages as described in this paper (i.e. the a-phenomenon) are 
not destroyed even with large time steps and &,,. Changing and refining numerical 
parameters may have a greater effect on the solution after a longer period of time or 
on the steady solution. Since our simulation is for the initial unsteady stages of 
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FIGURE 7. Detailed streamline pattern of the secondary vortex region for flow at R = 9500 at 
time t* = 1.75. 

development, and not the steady solution, the higher-order-accurate approximation 
for the velocity of the sheets produces better results. (Detailed plots for the above 
numerical experiments have been done but are not included because of their 
similarity to results already presented in this paper.) To obtain more accurate 
solutions the method will need to be revised to give higher-order accuracy in the 
approximations throughout, and a new approach will need to be developed to deal 
with the coupling in the method. 

Calculations are also performed for the cases where the equations simulated were 
(i) inviscid in the outer flow and viscous in the boundary layer, and (ii) the 
parabolized Navier-Stokes equations. The solution for the inviscid-viscous inter- 
action of the Euler and boundary-layer equations gives results that are better than 
the case where t,he parabolized NavierStokes equations are used (see figure 4). 

4.4. Other numerical functionals 
4.4.1. Velocity on the wake axis 

The u-velocity on the x-axis behind the cylinder is plotted in figures 11 and 12 for 
R = 9500 and 3000 respectively. The portion of the curve that is positive corresponds 
to the positive u-velocity and the negative portion is backflow on the wake axis. Note 
that the rear stagnation point is situated a t  point (1 .O,  0.0) and the diameter of the 
cylinder is 2. 

It should be noted that the difference in the graphs (between our calculations and 
those of Bouard & Coutanceau 1980 and Ta Phuoc LOC & Bouard 1985) can be caused 
by one vortex element having a large random walk in the downstream direction. 
Since the random-walk component of the flow is drawn from a Gaussian distribution 
of mean zero and variance 2AtlR, a small percentage of the elements can have a large 
random-walk component. For the case R = 3000, the velocity on the wake axis is not 
as great as indicated by Ta Phuoc Loc & Bouard (1985) or Bouard & Coutanceau 
(1980) a t  latter times. It is difficult to make meaningful comparisons of these results 
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FIGURE 8. Flow past a cylinder at t* = 2.00 and R = 9500. (a) Plot of the velocity vector field. 
(b)  Plot of the velocity of each vortex element in the flow. (c) Plot of the streamlines in the wake 
of the cylinder above the z-axis. The flow is symmetric. 
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FIQURE 9. Plot of the induced velocity of each vortex element in the flow at  time t* = 1.50 and 
R = 3000. 

FIGURE 10. (a)  Detailed velocity vector field and ( b )  streamline pattern of the secondary vortex 
region for flow a t  R = 3000 at time t* = 2.25. 

since no error bars or statistical analysis were given in the published experimental 
data. 

4.4.2. Drift of the core and length of the wake 
The curves LID, alD and b/W are plotted in figures 13 and 14 for R = lo4, 9500 

and 3000. LID measures the length of the recirculating zone; L is the distance 
between the rear stagnation point and the point where the -umaX/Um curves in 
figures 11 and 12 cross the wake axis. (a/D, blD)  are the coordinates of the core of the 
main vortex measured from the rear stagnation point and normalized by the 
diameter. The curves alD and b/2D measure the drift of the core of the main vortex 
(see figure 1 for reference). 
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FIGURE 11. Velocity on the wake axis, R = 9500. 
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FIGURE 12. Velocity on the wake axis, R = 3000. 
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FIQUBE 13. The length of the recirculating zone, LID; and the drift of the core of the main vortex, 
a/D,  b / W .  

a / D  b/ZD L/2D 
R = lo4, M = 20, At* = 0.05, Em, = 0.50 0 
R = 9500, M = 20, At* = 0.03, Emax = 0.25 A A 0 
R = 9500 (experimental results of Bouard & Coutanceau 1980) 0 0 0 

0 0.5 1 .o 1.5 2.0 2.5 3.0 
t* 

FIQURE 14. As for figure 13 but at R = 3000. 
a / D  b / 2 D  L/2D 

This study -A- -=- -0- 
Experimental results of Bouard & Coutanceau (1980) A 0 0 
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FIQURE 15. Transient separation point. 

4.4.3. Angle of separation, 
Assuming that the point of separation is where the streamlines leave the body, 

we are able to calculate the angle of separation at  regular intervals of the flow 
development. These data points are connected in figure 15 by a cubic spline. For 
R = 3000, a cubic-spline interpolation with smoothing is used. This graph shows 
satisfactory agreement with other experimental and numerical results. 

5. Conclusion 
A grid-free hybrid random vortex numerical method is used to study the unsteady 

flow development behind an impulsively started circular cylinder. At Reynolds 
numbers 9500 and lo4, the flow development is very rapid and complex. By tracking 
the creation, diffusion and convection of vorticity, we are able to distinguish between 
the vortex structures and the areas of recirculation in the wake. Knowing the 
distribution of vorticity (vortex elements) allows us to predict which structures in 
the flow will grow and which ones will disappear. Our solution gives insight into the 
mechanism that controls the development of the complex structures in the wake 
at high Reynolds numbers. The results of our simulations also indicate that our 
numerical method is appropriately sensitive to changes in the Reynolds number 
R ;  changing R by a small amount does not alter the development of the flow 
significantly, but changing R by a large amount (to 3000) completely alters the 
development of the flow. The flow development at  these Reynolds numbers 
corresponds well with known experimental and numerical results. The success of our 
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simulation lies in the ability of the method to accurately track the creation, diffusion 
and convection of vortex elements. The storage and computational time requirement 
is small compared with that needed to solve the same problem by a fourth-order- 
accurate finite-difference method on a 101 x 301 grid. 
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